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Gauge Invariance Properties of Transition Amplitudes
in Gauge Theories. 1
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The functional approach developed earlier for scattering theory in quantum field
theory makes it possible to make an explicit and complete study of the gauge
invariance properties of fransition amplitudes (not just of the gauge transforma-
tions of Green’s functions) in covariant and noncovariant gauges. This paper is
devoted to the Abelian gauge theory of quantum electrodynamics. Using the
powerful technique of functional differentiation and starting from the Coulomb
gauge, the gauge invariance property of transition amplitudes, up to gauge-
dependent scaling factors, is explicitly established in arbitrary gauges. The key
ingredients in the analysis are the derived exact expression for the vacuum-to-
vacuum transition amplitude, introducing in the process arbitrary gauges, and
the idea of stimulated emissions by external sources studied earlier.

1. INTRODUCTION

The single most important function that one determines in quantum
field theory is the so-called transition amplitude describing the scattering
process of an arbitrary number of particles. Recently I have developed
(Manoukian, 1987) a functional approach to scattering theory in field theory
by deriving an explicit functional differential expression for transition
amplitudes. The whole purpose of this approach was to avoid dealing with
many of earlier techniques of noncommutativity properties of field
operators, avoid solving any field equations of the Yang-Feldman type,
avoid solving for Green’s functions, avoid dealing with combinatoric prob-
lems (such as guessing correct weight factors) associated with the so-called
Feynman rules and the old-fashioned Wick’s theorem, avoid dealing with
creation and annihilation operators, avoid dealing with mass-shell limits as
in the LSZ derivation of the reduction formalism, which becomes quite
involved for higher spin fields, and, finally, avoid dealing with the often
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788 Manoukian

quite complicated and usually ambiguous continual (Feynman and Hibbs,
1965; Faddeev, 1981; Manoukian, 1985) path integrals, since the functional
differentiation (Schwinger 1951, 1954) provides a solution (Symanzik, 1954;
Lam, 1965; Manoukian, 1985) to the latter.

The above functional differential approach turns out to be quite useful
for studying gauge invariance properties of transition amplitudes. The gauge
transformation properties of Green’s functions have been repeatedly studied
(e.g., Landau and Khalatnikov, 1956; Johnson and Zumino, 1959; Zumino,
1960; Bialynicki-Birula, 1962; Lukierski, 1963; Johnson, 1964; Abers and
Lee, 1973; see also Manoukian, 1986a). The situation with the physically
more important function, that is, of the transition amplitude, is very much
different. The gauge independence of transition amplitudes, up to gauge-
dependent scaling factors, is only often stated or just an argument is sketched
for its validity (Bjorken and Drell, 1965, p. 198; Abers and Lee, 1973; p. 90;
Lee and Zinn-Justin, 1973, p. 1052; Popov and Faddeev, 1972, p. 230), and
even then this is just done for the transformation between two particular
gauges, such as the Coulomb and the Feynman, or the Coulomb and the
Lorentz ones. The purpose of this paper is to consider this problem afresh
and give a complete and explicit demonstration of this problem. Here we
consider only the Abelian gauge theory of quantum electrodynamics; the
non-Abelian gauge theories will be considered in a future report. The key
ingredients in the analysis are the derived [equation (43)] exact expression
for the vacuum-to-vacuum transition amplitude (cf. Manoukian, 1986a), by
introducing in the process arbitrary gauges, and the idea of stimulated
emissions by external sources studied earlier (Manoukian, 1986b).

2. TRANSITION AMPLITUDES IN ARBITRARY GAUGES

The vacuum-to-vacuum transition amplitude in the Coulomb gauge in
quantum electrodynamics in the presence of external sources J (with J°=0),
7, and 7, where the latter are coupled linearly to the 3-vector potential A
and the Fermi fields ¢ and 4, respectively, may be inferred directly from
Manoukian (1986a) [see in particular equation (2.14)]:

(0.]0_) = exp(iZ;) (0,10, (1)
where (j=1,2,3)

NI A
=J(dx)[eo<—z)577 SV g - )61,( ]
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(0,]0_)o=exp [i j (dx) (dx') 7(x)S.(x - X’)n(x’)}

X exp [ J‘ (dx) (dx') J'(x)D (x—x )J’(x')]

= exp(i7S,7) exp (5' J"Dﬁﬂ) (3)
and
(dp) (—yp+m) AT
_ = ip(x—x + 4
Six—x) J(2 ¥ P+ mi—ie , e->+0 (4)
expressed in terms of the renormalized mass,
3 (dk) ik(x—x'
D§(x—x" =J' ) D§ (k) e*C= (5)
kik; 1
Dj (k)= (gy—i#) e >0 (6)

(4,j=1,2,3).
We may also write
i !

TwD§ 00 =(8'-55 ) sng (#7-55) 10 @)
where
DY) =8~ kk G (k) ®)

and G(k) is an arbitrary function. The right-hand side of (7) also may be
simply written as

iyl J
("'—k—k—>11(k) 8 (gf"‘ k") (k) ()

For a given 3-vector k we introduce three unit vectors e(k, 1), e(k, 2), and
k/|k|, such that

kKie(k,A\)=0, A=1,2; i=1,2,3

(10)
e'(k,A)e(k, AV*=85,,, AMA=1,2
and write the completeness relation:
; ; " Kk
2 ek A)e(k A) +—=g" (11)

2
A=12 k
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or

irJ
T el A)e (K, A)E = gf
2

P
A=1, k

(12)

The covariant form of the completeness relation (11) may be also
written. To this end, for a given null form-vector k, k* =0, one may introduce
the orthogonal system (cf. Schwinger, 1970) e“(k, 1), e*(k,2), (k—-k)*,
(k+ k)", where k* = (k°, —k):

e“(k Ne,(k, AV =8y, ke*(kA)=0, ke*(kA)=0 (13)

and write the completeness relation

ny

} e (KRR (=R (k=R)
WL, ¢k A)e(lo )+ 2kk e

or

k“k”+kk"
kk -

By

Y et(ka)e”(kA)*+

The relations in (13) imply the following properties for e“(k, A):
e (kA)=(0,e(k, 1)),  k.e“(kA)=0, Kke(kA)=0 (14)

with e;(k, A) as already given in (10), (12).
Finally we introduce the notation

d3k 1/2 . kikj
Jir = [m] ek, A)* ( 7 —7) Ji(k)

k1" :
= [m] ek, A)*J'(k) (15)
and (Manoukian, 1986b)

n¥, _=(@2mde,) *7(p)u(p, o), My =(2mdw,)"*a(p,a)n(p)

* 1/2 = 1/2 = (16)
Npo, = (2m dwp) U(Ps 0')"7('17), Moo, = (2m dwp) n(_P)U(P, 0-)

where (Schwinger, 1970)

d’p

dw,=——2
= 2m)2p%

PO = (p2+ m2)1/2
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and the signatures + and — correspond to a particle and an antiparticle,
respectively. From equations (3), (7), and (9)-(16), we can then infer directly
from Manoukian (1986b) and the functional approach to scattering theory
developed earlier (Manoukian, 1987) the explicit expressions for the transi-
tion amplitudes.

To this end, we introduce the following notation: r=(p, 0, €), o =1, 2,
e=x,pe R’ s=(k A), A=1,2, ke R> We consider first the case e, =0 in
the presence of the external sources. The transition amplitude for the
scattering of n, fermions with values r,, ..., r, to n, fermions with values
Tl . - Ty, and m; photons with nonoverlapping values s,,..., 5, to m,
photons with nonoverlapping values si, . . . , s/, is given by, from Manoukian
(1986b),

! L | 7 .
(0T (AR L | CURRUN S U S

= (lnr{) e (lnri,z)(lnf.l) U (l")i)(ljs;) tor
X (5, )(07%) + -+ (7%, )04102)s (17)

deleting those disconnected parts where at least one particle (electron,
positron, or photon) just goes through the process without being scattered
(that is, being detected by the corresponding source!).

The exact transition amplitude for the above process for ¢,# 0 is then
{Manoukian, 1987)

/ [ ! .
(rla"'5rnz,s19"'3sm2|r15""rn19sla"‘asml>

A
=eXPUL) (Fl ooy iy St e s S| Pis ooy B3 S1p e vy S do (18)

by finally setting the external sources equal to zero, where the expression

on the extreme right-hand side of equation (18) is given in (17), as deter-

mined in the Coulomb gauge. Now we make transitions to arbitrary gauges.
We write

IA(g)=| (dx) e ™ (x), ¢*=0 (19)

o

n(p)=| (dx) e"™n(x)

o

= ds”_ipxJ(dx')mx—x')x(x'), X040, pO= (p'+ m?)"?

(20)
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where

(dp)  ix
x<x>=J 2 e”x(p) 21)
(2m)
and y{p) is an arbitrary, smooth function (infinitely differentiable) of
compact support containing the mass shell p*+m’>=0 such that

X(P)|p2+m2=o =1.
Since (Manoukian, 1986a)

yd _n_9°
20.1030= (L m) (=) 5 = )<o+|o % (22)
F(x)04+]0_)o= ( _y_.a+ m) (1) ———(0,]0_), (23)
i 8 ( )
we have
Y )
(g” —88_2 ) Ji(x)0,]0_)g = —3, F"™(0,]0_) (24)
where (1 =0,1,2,3; i,j=1,2,3)
TRV _ 73 vi__ 3 i
F ~(a( ~ z)%) (25)
Using also the fact from (10), with k>=0,
J (dx) e *e,(k, A)*(—3,F™)
_,[(") g ke, AY#(~01%) (i) e 2
= x ( )(—i) 5T (%) (26)

we can rewrite (17), by using finally the mass shell restrictions, as

5 5 , 8
U (_,‘— (4 aj,) (0+t0—>0

27
5T (27

7=0,77=0,=0

corresponding to the elementary e,=0 case, where U is the functional
differential operator:

[ﬁ (2m de ,)‘/ZAJ'] [ 1 2m de )‘/23] [ i («——‘1-—3"'—)1/1 é.]
M P o P S \(27)2)k)) !

m, d3k 12 Py
"[H((zwle t) Df] (28)
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with

A= | @ texpt-ieinp a1

J 8
< o (2em) s oo

éj - J d3xj+n1 [exp( ig]"""xpjxj“'"l)][ﬁ(rj)]laaj

X J dXin X(Xjin,) ( - 'Yaj' nl+ m) : e
1 i 57](xj+n, - j+"x)
&= [ (@ texpi-itgpen s 1<-1p )
A s ’/ m 5
D, = f (dy;) [exp(iky;)]e™ (k;, A;)(—01;) 8" (y})

where the limits
x(l)—)w, R ] x(r)ll_) m’ x?‘l‘+l_) _ws R ] x(r)ll+n2—> —00
are taken independently, p} = (p; + m?)"/?, p;°= (p/+m*) ', ¢V =|q)|, ¢/° =
lqjl, and a; = (1+¢1)/2.
Since U involves only functional differentiations with respect to the
sources only and not the sources themselves, we may rewrite the amplitude

(18) in question as

5 5 8 -
U (g, o7 e'g) exp(iZ7) (0,]0_)

5 5 .6
U2, o2 ) (0.0
(an’aﬁ’ew')<+| )

where (0,|0_) is the exact vacuum-to-vacuum transition amplitude in (1).

We will make the transition to arbitrary gauges. To this end, we rewrite
the propagator in (8), by introducing in the process cutoffs u,, A with
pmo—~>0, A=>00, as

n=0,7=0,/"=0

(29)

7=0,77=0,J'=0

AZ \la

A G0

Dy (k)= [kz+ﬂ(z)_i£ k,k,G(k)] <

(i,j=1, 2, 3), by keeping, for convenience, the same notation as in (8), for
some suitable integer a such that an expression like (32) together with its
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first two derivatives exist. We consider the functional exp(3ij'D§, j™), where
j™ is arbitrary. It is then readily seen that

exp[eoe(9 mﬁ( )] < J'Dij >

. 2
ieg
=exp (2 ‘DG ™ ) exp [? F(O)]
. dx I
X exp l:zeoe J (dx’) ? D, . (x—x")j"(x )] 31
where € will be chosen to be +1, and where

J
L D7 (x—y)

ENE)
F(x-y)= *

(dk) !kx—y)( AZ )a[l 1 ) :|
[ (m) leeraeow] o

We also use the identity

exp [eoeyz—: 5;%] exp [ieoex J (dx’) Df,}n(x x’)j”’(x’)]

=exp [iege€,F(x—y)] exp [ieoex J' (dx’ ) Df,,(x x)j™(x' )] (33)

Upon using equations (31) and (33) repeatedly, we obtain the following
useful identity:

i m
exp (EJ':DfnJ )

={exp [——ffzé F(O)]}n exp l:—ie(z) Y eiejF(xi—xj)]

1=i<j=n
n

X exp [ieo 2 € J (dX’) Dlm(x - ’)J"'(X’)]

i=1

noam 8 ,
Ly 8j"‘(xi):l xp (2 Duni” ) (34)

where n and the space-time points chosen x,, ..., x, are arbitrary!

X exp [eo
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From equations (3), (7), (30), and (34), we may write

exp (21DCJ’>
“e{ (-0 2o | 55
xewp (33055")|

2
:exp[—i%F(O)]exp[—ieﬁ Y eiejF(x,-—xj)]

I=i<j=n

<o | @0 [ (6=57) 0 575

xex[ > or_® ]
€&—
P i=t 62 Ofm (x;)

X exp ( D,mj"') (35)
2 =0
where we have used the fact that
’ ai G ' Im all i ’
(dx)—éEDsl(x_x) 8" g7 Jn(x")=0 (36)
for all J,,.
We introduce the external current j° and introduce the functional
| exp(4/*Dg") (37)
(m, v=0,1,2,3), where
8uv LAY
(k)= [%—kﬂkﬁ(k)] (m) (38)

To write an explicit expression for the vacuum-to-vacuum transition ampli-
tude (0.]0_) expressed in terms of the covariant propagator (38) in an
arbitrary gauge specified by the G(k) term, we use the following identities:

— 5 i_a_ __8_"6_'_' 4 0 yG m
exp[ e“J @) 5@ 570 (g"’ az)aj,(x)]exp(” Donj™)

= exp(ij°Domj"™) (39)
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(u=0,1,2,3) for all G,
. 2
.€p 8 é 1
o) ol 0585505
e"p(z “)e"p[ ZJ(X)Sn(x)yﬁﬁ(X) 2
2 _é_]
on(x) Y7 (x)

_ _ 4 o 8 _aoaigiv 8
"e"p[ e"J ) a0 500 (g"" 2’ )sj'”(x)

X exp (2 D,WJV> (40)

for wg—0,

exp [—ieo i €,0) j (dx)jo(x)G(x—xj)]

j=1

n a:ﬂ 5
X exp(ij°Dinj"™) exp [e" Py 6j’"(x,-)]
=exp [eo Z €5 m( )] exp(ijOD(?mj"‘) (41)
i=1

and finally we use the identity
8 5 8
d #——9 & 7S,
exo | [ @0 " s (e 6ja<x>>] xp(inS:m)

= exp {iﬁ [exp( eoa 816 )] S, [exp (eoa“ ; )] ’fl} (42)

where a* =(0, 8/8%).
Therefore we may explicitly write the exact vacuum-to-vacuum transi-
tion amplitude, starting from the Coulomb gauge, as ((0.|0_)=(0,[0_),, 5 )

(0,]0_) = {exp [—i% F(O)]}n exp [——ieﬁ ¥ eiejF(xi—xj)]

1=i<j=n

{am
<ese{ ] ao (s -5) 400 | g5

o9 8 .
X exp [eo ; €& _—‘“—] Zlp, p,jl

-1 9" §"(x;) (43)

*=0
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which is independent of n and x,,..., x, (!) where
o . _ Y4 (= é
Z[p,p,J]—eXp{tj(dX)[eo( )5 Sk (=i )5p( )( )aj*‘(x)
. é . 8
o) S Y 55(?6)“
X exp(ipS.p) exp (2 DuVJV)
and
(%)= n(x) [ 22 ] s
p(x)=n(x)exp| e 5 (%) (45)

F(x—y) is defined in (32), D in (30), and the terms in (41) dependent
on & j°(x)G(x - x;) in (41) do not contribute for j°=0. We recall that n
and the space-time points x,, ..., x, are arbitrary. Expression (43) provides
a theoretical laboratory for the investigation of all sorts of problems in
QED starting from the Coulomb gauge.

We take n=n;+n, in equation (43) with x;>x;—X; for j=1,...,n,
and - —¢ for j=1,...,n,, in reference to equation (28). Using the
property (10) to replace e™ 8/8J™ rigorously by e™ §/8j™, and equations
(28), (29), and (43)-(45), we may explicitly write the transition amplitude
(29) as

{ ( 6 &6 , O )
XS U l—, —=,¢"—
8p 6p 8j

—ie(z, Z EijF("‘):'}Z[Pa ﬁa]]

1=i<j=n

p=0,5=0,j=0

[
_ {exp [ £ F(o>]}" exp(i})
(

(46)

X exp [—ieﬁ % eiij(---)]}Zo[p, P> Jjl
1si<j<=n p=0,p=0,j=0
where the points x;, x; in F(--.} have been identified as described above

corresponding to the integration variables X in equation (28).
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In many practical computations, one chooses G(k) = 0, leading to the
so-called Feynman gauge. Quite generally one chooses G(k)~1/k* for
k*- o, including, in particular, a whole the class of covariant (Landau,
Yennie, etc.) gauges. It is interesting to point out that one may also choose
other noncovariant gauges, such as

1 1
Gk)=5—5—+HKk’ 47
() =3 T HO® (47)
We consider explicitly the expression

[U exp —ieg % eiejF(---)] Zolp, p,j] (48)

1=i<j=n

in (46) for |x}| - co. By definition, for given values of the integration variables
X190 ens Xy Xl,--'ana

Y egF(-- )= ¥ egF(xi—x—-X+X)) (49)

1=i<j=n 1=i<j=n

Consider the application of (ya'/i+m)8/87(x; — X,) in (28) as a contribu-
tion to (48). This leads explicitly to

J d’x; [exp(—ig;pix) [ (r})]* J dX; x(X)[-1Zolp, 5, jl[v(r)]' ™% (50)
where

[-]1= [ip(xi_Xi)—egyai X giEjF(xi_Xi'_xj+‘ij)S(xi_Xi—')p( )]

i<j=n
xexp[—ieﬁ D e,-st(x,-—X,-—xj+X,-)] (51)
i<j=n

By invoking the Riemann-Lebesgue lemma, we may assert that F(x; — X; —
x;+ X;) and its first derivative >0 for |x}| > o0 (Adler and Bardeen, 1971),
and we conclude that in this limit [-]-ip(x;~ X;), and (51) be simply
replaced by

[a(r)1%in(p})Zolp, p, Ao (r)] ™=

=[a(r)]™ J (dx;) [exp(—ie;pix)] (YTai+ m)

6 - ’ 1—a,.
meO[p, pa]][u(ri)] (52)

A similar analysis may be carried out with respect to the other variables x;.
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Finally we use (14) to rewrite e™ §/8j™ in U(5/8p, 8/8p,e™ 6/5j™) as
e (g"" —a"d"/ 8%) 8/ 8j”. All told, we may rewrite the transition in question
in (18) as

2 " 5 & )
{exp[—i%F(m]} exp(i}) U(ap 5 <5 )zo[p,p,J]

p=0,p=0,j=0

(53)

where U may be written as in (28) with /ij, ﬁj, replaced, respectively, by

La(ri)]® J (dX;) [exp(—igp; X;)] (l?lﬂ“ m) ) [o(rDT™ (54)

3
67 (X;)

[ﬂn)]“"if(dX)[eXp(l p,X)](—yl +m [u(r)]  (55)

n(X;)
and e™ 8/8J™ and e™ 8/8J™ replaced by
ek(g" —35"/3) 8/8°(x),  eu(g" —99"/3%) 8/ 8" (x;)

in C}, Ijj, respectively. The photon propagator in Zyfp, g, j] is defined in
(38) [see also (44)].

Equation (53) establishes the equivalence of the Coulomb gauge with
the arbitrary gauges as defined in (38) for the transition amplitudes, up to
gauge-dependent scaling factors such as [exp(—ie/2) F(0)]", and is a
precise statement of the gauge independence of the so-called renormalized
transition amplitudes. Finally, when we make the replacement ¢, - e, + q#A
then the factor (g*” —3%9”/8°) in e, (g"” —9"9”/5°) 8/ 8j” ensures the invari-
ance of the latter expression. The situation with regard to non-Abelian
gauge theories will be treated in a forthcoming report.
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