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Gauge Invariance Properties of Transition Amplitudes 
in Gauge Theories: I 

Edward B. M a n o u k i a n  ~ 
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The functional approach developed earlier for scattering theory in quantum field 
theory makes it possible to make an explicit and complete study of the gauge 
invariance properties of transition amplitudes (not just of the gauge transforma- 
tions of Green's functions) in covariant and noncovariant gauges. This paper is 
devoted to the Abelian gauge theory of quantum electrodynamics. Using the 
powerful technique of functional differentiation and starting from the Coulomb 
gauge, the gauge invariance property of transition amplitudes, up to gauge- 
dependent scaling factors, is explicitly established in arbitrary gauges. The key 
ingredients in the analysis are the derived exact expression for the vacuum-to- 
vacuum transition amplitude, introducing in the process arbitrary gauges, and 
the idea of stimulated emissions by external sources studied earlier. 

1. INTRODUCTION 

The single most important function that one determines in quantum 
field theory is the so-called transition amplitude describing the scattering 
process of an arbitrary number of particles. Recently I have developed 
(Manoukian, 1987) a functional approach to scattering theory in field theory 
by deriving an explicit functional differential expression for transition 
amplitudes. The whole purpose of this approach was to avoid dealing with 
many of earlier techniques of noncommutativity properties of field 
operators, avoid solving any field equations of the Yang-Feldman type, 
avoid solving for Green's functions, avoid dealing with combinatoric prob- 
lems (such as guessing correct weight factors) associated with the so-called 
Feynman rules and the old-fashioned Wick's theorem, avoid dealing with 
creation and annihilation operators, avoid dealing with mass-shell limits as 
in the LSZ derivation of the reduction formalism, which becomes quite 
involved for higher spin fields, and, finally, avoid dealing with the often 
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quite complicated and usually ambiguous continual (Feynman and Hibbs, 
1965; Faddeev, 1981; Manoukian, 1985)path integrals, since the functional 
differentiation (Schwinger 1951, 1954) provides a solution (Symanzik, 1954; 
Lam, 1965; Manoukian, 1985) to the latter. 

The above functional differential approach turns out to be quite useful 
for studying gauge invariance properties of transition amplitudes. The gauge 
transformation properties of Green's functions have been repeatedly studied 
(e.g., Landau and Khalatnikov, 1956; Johnson and Zumino, 1959; Zumino, 
1960; Bialynicki-Birula, 1962; Lukierski, 1963; Johnson, 1964; Abers and 
Lee, 1973; see also Manoukian, 1986a). The situation with the physically 
more important function, that is, of the transition amplitude, is very much 
different. The gauge independence of transition amplitudes, up to gauge- 
dependent scaling factors, is only often stated or just an argument is sketched 
for its validity (Bjorken and Drell, 1965, p. 198; Abers and Lee, 1973; p. 90; 
Lee and Zinn-Justin, 1973, p. 1052; Popov and Faddeev, 1972, p. 230), and 
even then this is just done for the transformation between two particular 
gauges, such as the Coulomb and the Feynman, or the Coulomb and the 
Lorentz ones. The purpose of this paper is to consider this problem afresh 
and give a complete and explicit demonstration of this problem. Here we 
consider only the Abelian gauge theory of quantum electrodynamics; the 
non-Abelian gauge theories will be considered in a future report. The key 
ingredients in the analysis are the derived [equation (43)] exact expression 
for the vacuum-to-vacuum transition amplitude (cf. Manoukian, 1986a), by 
introducing in the process arbitrary gauges, and the idea of stimulated 
emissions by external sources studied earlier (Manoukian, 1986b). 

2. TRANSITION AMPLITUDES IN ARBITRARY GAUGES 

The vacuum-to-vacuum transition amplitude in the Coulomb gauge in 
quantum electrodynamics in the presence of external sources J (with jo = 0), 
r/, and ~j, where the latter are coupled linearly to the 3-vector potential A 

and the Fermi fields ~ and ~, respectively, may be inferred directly from 
Manoukian (1986a) [see in particular equation (2.14)]: 

(0+10_) = exp(iC~,) (0+[0_)o (1) 

where (j  = 1, 2, 3) 

" f F 8 8 8 ~'  = .I eo(-i) 8 - ~  7J( - i )  8 - ~  ( - i )  8jj(x) 

+(- i)  (-i) 8 - ~ 7 ~  -~ (-i) Srl(x------ ~ 

X 3/o(-i)~_8_~,+8m(_i) 8 8 ] 
o~Ttx) 6 - ~  (-i)  ~ (2) 
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1 

l i C j 

and 

S + ( x - x ) = f  (dp) ( - T p + m )  . , 
(2r e e 'p(x-x), e ~ + O  (4) 

expressed in terms of the renormalized mass, 

c , ~ (dk) c eik(x-x ") DIS (x - x  ) = j ~ P O. (k) (5) 

[ , kikj'~ 1 e ~ + O  (6) 
D C ( k ) = ~ g ~ - - ~ J  k2_ie, 

(i , j  = 1, 2, 3). 
We may also write 

/ kikl"x { k~k'n'~ 
J~ (k )DC(k ) J j ( k ) =( g " - - ~  - )  J,(k)D~(k) \gd" , k 2 ] J,.(k) (7) 

where 

D ~ ( k ) -  g o - k ,  kjG(k) (8) 
- k 2-  ie 

and G(k) is an arbitrary function. The right-hand side of (7) also may be 
simply written as 

g - - ' -~ -J  _ - k2 ] Jm(k) (9) 

For a given 3-vector k we introduce three unit vectors e(k, 1), e(k, 2), and 
k/[k], such that 

Uei(k,A)=O, A =1 ,2 ;  i = 1 , 2 , 3  
(10) 

ei(k,A)ei(k,A')*=8~,,, A , A = I , 2  

and write the completeness relation: 

, kik j .. 
ei(k, A)eJ(k, A) +_._~_=gV (11) 

A = I , 2  
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o r  

k 'k  j 
Y~ e'(k, A)eJ(k, A)* = g ~ -  k2 (12) 

2,=1,2 

The covariant form of the completeness relation (11) may be also 
written. To this end, for a given null form-vector k, k 2 = 0, one may introduce 
the orthogonal system (cf. Schwinger, 1970) e~'(k, 1), e"(k, 2), ( k - k )  ~, 
(k +/r ~', where/r = (k ~ -k) :  

e~'(k,A)e~.(k,A')*=82`2`,, k~.e"(k,A)=O, /~.e"(k, A) = 0 (13) 

and write the completeness relation 

(k +/~)"(k+/~) ~ ( k - k ) " ( k - s  ~ 
e~(k'A)e~(k'A*)+ 2kk 2kk, -g~'" 

A=I,2 

o r  

Y~ e"(k'A)e~(k'A)*+ kk -g"~  
A=I,2 

The relations in (13) imply the following properties for e~'(k, A): 

kiei(k, e~(k, A) = (0, e(k, A)), k~,e~(k,A)=O, A)=O (14) 

with ei(k, A) as already given in (10), (12). 
Finally we introduce the notation 

d 3 k  ]1/2 
jkX = L(2~lklJ e,(k,h)*{,,o\o - k  2 ]UU'~ Jj(k) 

d3k ] 1/2 

- L(2~lklJ e,(k, h)*J ' (k)  (15) 

and (Manoukian, 1986b) 

" r / * o , _  = (2m dtop)l/2 ~l(p)u(p , or), 

"q*o~+ = (2m dtop)X/2g(p, cr)rl(-p), 

~p~_ = (2m dwp)~/2a(p, o')•(p) 

,/p~+ = (2m doJp)l/2~(-p)v(p, or) 
(16) 

where (Schwinger, 1970) 

d3p 
drop- (2~r)32pO, 

pO = (p2+ m2)1/2 



Gauge Invarianee Properties of Transition Amplitudes 791 

and the signatures + and - correspond to a particle and an antiparticle, 
respectively. From equations (3), (7), and (9)-(16), we can then infer directly 
from Manoukian (1986b) and the functional approach to scattering theory 
developed earlier (Manoukian, 1987) the explicit expressions for the transi- 
tion amplitudes. 

To this end, we introduce the following notation: r = (p, o-, e), tr = 1, 2, 
= + ,  p E  R 3 ;  s - -  (k, A), 3. = 1, 2, kE R 3. W e  consider first the case eo = 0 in 

the presence of  the external sources. The transition amplitude for the 
scattering of  nl fermions with values r , , . . . ,  r,, to n2 fermions with values 
r ~ , . . . ,  r,:', and ml photons with nonoverlapping values s~,. .  . ,  sin, to m2 

' . ,  ' is given by, from Manoukian photons with nonoverlapping values s~,..  sin: 
(1986b), 

(r•, . �9 t . ! . ,  r,~, s ~ , . . . ,  Sin Jr1,... ,  r,~; S I ,  . . . , S m l o )  

= (i~?r~)''" (irlr~2)(iTl~)''" (ir/~)((j~) �9 �9 �9 

x ( ~ j , , : , ) ( ~ j ~ * )  �9 �9 �9 (~jL)(o+1O_)o (17) 

deleting those  disconnected parts where at least one particle (electron, 
positron, or photon) just goes through the process without being scattered 
(that is, being detected by the corresponding source!). 

The exact transition amplitude for the above process for eo ~ 0 is then 
(Manoukian, 1987) 

(r~,. .  ' . . . .  Smi > �9 , r n 2 ~  $ 1 ~  �9 . . ~ S m 2 1 r l ,  �9 . �9 , r n  I , $ 1 ,  �9 . . , 

A 

! " ! ! I = exp(i~x) ( r~ , . . . ,  r,2, s , , . . . ,  s,,2 r l , . . . ,  r,,; S l , . . . ,  s,,,)o (18) 

by finally setting the external sources equal to zero, where the expression 
on the extreme right-hand side of equation (18) is given in (17), as deter- 
mined in the Coulomb gauge. Now we make transitions to arbitrary gauges�9 

We write 

J~(q) = I (dx) e-'~ q2=0 (19) 

n(p) = I (dx) e-'PXn(x) 

= f d3x e-iPx f (dx') ~(x-x')x(x'),  x ~  +co, p~ 

(20) 
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where 

Manoukian 

(dp) 
X(x) = j - ( ~  e'PXX(p) (21) 

and X(P) is an arbitrary, smooth function (infinitely differentiable) of 
compact support containing the mass shell p 2 + m 2 = 0  such that 
X(P)l/+m~=o = 1. 

Since (Manoukian, 1986a) 

~7(x)(O+lO_)o = +m (-i) 6---~ (O+lO_)o (22) 

~(x)(O+lO_)o= - +m ( - i ) 7 ,  ,(O+lO-)o (23) 
o~tx) 

we have 

g - ~ - ~  JAx)(O+IO_)o=-GF"~'(O+IO_) (24) 

where (tz =O, 1,2,3; i , j= 1,2,3) 

F '~  = (O"(- i )  3 ,. 3 \ (25) 

Using also the fact from (10), with k2=O, 

j (dx) * ..i e-i~ei ( k ' ,x ) ( -o , ,F  ) 

= (dx) e-iaei(k, ~) ,(_[]2)(_i)  6fi(x)  (26) 

we can rewrite (17), by using finally the mass shell restrictions, as 

( 3 , ~_6._ ei8_~7 ) (0+10_)o ! (27) U 

corresponding to the elementary eo = 0 case, where U is the functional 
differential operator: 

(2m dtopj) l/ A 2 (2m dtop,)'/2Bj " ") 

xrri,' <,",<, ] -;=, \(2~)321k;11 15, (28) 
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with 

f �9 - ! - t ~e. Aj  : d3xj  [exp(-lejpjxj)][u(r))] J 

f {To j \ a 
x dXsx(Xy ) k-T+m) 3~l(xy-Xs)[v(rs)]'-~s 

.f = d xj+~, [exp(tej+~,pjxj+.,)][v(rj)] ~ Bj 3 �9 - 1 - - a .  

x dX~+., x(Xj+.,) @(xj+.,_Xj+.,)[u(rj)]~ 

I ( d x ; )  . , ,  m , , ,  , 4 =_ [exp(-zkjxfl]e (ks, As) (-Fqs) 6Y~(x;) 

f ik ' " 3 Oj = (dy'j) [exp( ~y~)]e (ks, a j ) ( - [ ] j )  ajm(y~. ) 

where the limits 

x o_, c o , . . . ,  x ~ -~ co, x~  - c o , . . . ,  x~ -co  

are taken independently, pO = (p2+ m2),/2, p~O= (p~2+ m2)1/2, qO = [qj], q~O = 

Iq;I, and a t = (1 + ejl)/2. 
Since U involves only functional differentiations with respect to the 

sources only and not the sources themselves, we may rewrite the amplitude 
(18) in question as 

6 ei_3fi) exp(i~l)(O+[O_)o o 

where (0+10_) is the exact vacuum-to-vacuum transition amplitude in (1). 
We will make the transition to arbitrary gauges. To this end, we rewrite 

the propagator in (8), by introducing in the process cutoffs /-to, A with 
/Zo---> O, A->co, as 

~ 

D~(k) = [ g~s k,ksG(k) (30) 
k k 2 + tX2o - ie \ ~ - - ~ ]  

(i,j = 1, 2, 3), by keeping, for convenience, the same notation as in (8), for 
some suitable integer a such that an expression like (32) together with its 
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first two derivatives exist. We consider the functional ~..t c .,, exp(~lg DtmJ ), where 
jm is arbitrary�9 It is then readily seen that 

0 m { i aD o .m~ exp[eor ~j,~(x)]expk~J ,mJ ] 

~, oo m' [~ ] =exp k-dj lmJ ,] exp F(O)_I 

Oi D..(x- x')jm(x') ] (31) 

where �9 will be chosen to be +1, and where 

F(x-y)=d'x~f D~(x-y) 

= f (dk):s " [ A ~ ~ 

We also use the identity 

[ om ~ ]exp[ieor -~ ] exp eoEy 02 8j ~(x) (dx') O~ Di~(x_x,)jm(x, ) 

i f  0 ] �9 9 v x G ! � 9  v =exp[te?~ex%F(x-y)]exp ieoex (dx)~-SDim(X-X) J (x) (33) 

Upon using equations (31) and (33) repeatedly, we obtain the following 
useful identity: 

[i "O G .m~ exp k~jt ImJ ] 

"e2 " E~jF(xi- xj) ] 

xexp leo �9 (dx')-gTD;.~(x;-x')jm(x') 
i = l  

[ o , ~ ]  (/., .~) 
xexp eo ~ el02 exp i = 1  3j ~(xi) ~J Dt,,J (34) 

where n and the space-time points chosen X l , . . . ,  xn are arbitrary! 
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From equations (3), (7), (30), and (34), we may write 

/ i .  ~.m\l 
x exp t2JtD'mJ ) J~=o 

[ ' ] [  ] =exp  - i  2 F(O) exp -iegl~_i~<j~_ ~ eiejF(x~-xj) 

F / dam\ xexp {f Ux) LV~ 
[ o j] xexp eo 2 e~O2 �9 

, = ,  8j X,) 

I . l  g . m  
x exp J DlmJ (35) 

j=O 

where we have used the fact that 

O~ D~(x-x') gtm (dx') ~_ -~ ) Jm(x') = 0 (36)  

for all jm. 
We introduce the external current jo and introduce the functional 

exp( l j~D~d  ") (37) 

(/z, v = 0, 1, 2, 3), where 

r ,,,... ],' D~L(k)=Lk2_ i~  k~k,,G(k) \k2+A2 j (38) 

To write an explicit expression for the vacuum-to-vacuum transition ampli- 
tude (0+10_) expressed in terms of the covariant propagator (38) in an 
arbitrary gauge specified by the G(k) term, we use the following identities: 

exp -eo  ( d x ) - ~  3' exp(ij~ ") 

= exp(ij~ ") (39) 
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(/z =0,  1,2,3)  for all (3, 

{_/,~nO .,~ [ .eo 2 a 8 
exp k - ' 7 1  (ax) r ~ 

(13 

x 8---~- ~ 3'0 

= e x p  -eo  ( d x ) ~ 3 ,  ~ go. 02 ] Sj"(x) 

x e x p  - " G �9 

f o r  2 /Xo'+ 0, 

Manoukian 

(40) 

,=1 8 j~x , )  

=exp  eo L e/Oz exp(ij~ m) (41) 
, = ,  ajffx,) 

and finally we use the identity 

exp eo (dx) 8- ~ 8-~-~ O" \ ajo'(x)/J exp(i~S+7/) 

=exp{i~ [exp(-eoa"8~7)] S+[exp(eoa~'8~y)] Tq } (42) 

where a ~' = (0, 0/02). 
Therefore we may explicitly write the exact vacuum-to-vacuum transi- 

tion amplitude, starting from the Coulomb gauge, as ((0+10_) = (0+10_),,~a,) 

xexp{I(dx)[(gl" 02, 

xexp  eOi~m 8jV(x,) Z[O, (43) 
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which is independent of n and Xl, . . .  , X n ( I ) ,  where 

Z[p,~,j]=exp i (dx) eo(-i) "g"(-i) 8--~(-i) Bj~(x) 

8 

) exp -~j"D~j~, 

--- exp(i~)) Zo[p, ~,j] (44) 

and 

p(x) = ~7(x) exp [ eo ~ 6j~(x) ] (45) 

F(x-y) is defined in (32), D,~ in (30), and the terms in (41) dependent 
on 0~ Ij~ in (41) do not contribute for jo=  0. We recall that n 
and the space-time points Xl , . . . ,  x, are arbitrary. Expression (43) provides 
a theoretical laboratory for the investigation of all sorts of problems in 
QED starting from the Coulomb gauge. 

We take n = nl + n2 in equation (43) with xj ~ xj - Xj for j = 1 , . . . ,  n, 
and ej-~-ej for j =  1 , . . . ,  n2, in reference to equation (28). Using the 
property (10) to replace e m 8/M m rigorously by e m 818j m, and equations 
(28), (29), and (43)-(45), we may explicitly write the transition amplitude 
(29) as 

{ U ( _ 8  8 e,,__8__8 '~ 
x \go'  ~#' 8Jm/ 

xexp [ - ieg  Y. eieyF(.-.)]}Z[p,#,j] 
1 <-- i < j ~  n p =0,t5 = O j  =0  

x U 8p 8/5 em 
' ' 8 j /  

xexp [ - ieg l_<i<j_<, ~ EiEjF(,-.)]} Zo[p,p,j] o=o,~=od=o (46) 

where the points x~, xj in F ( . - . )  have been identified as described above 
corresponding to the integration variables Xj in equation (28). 
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In many practical computations, one chooses G(k) = 0, leading to the 
so-called Feynman gauge. Quite generally one chooses G ( k ) - 1 / k  4 for 
k2~oo, including, in particular, a whole the class of covariant (Landau, 
Yennie, eic.) gauges. It is interesting to point out that one may also choose 
other noncovariant gauges, such as 

1 1 
G(k) =k2 k2q_/zg_ is k H(k2) (47) 

We consider explicitly the expression 

[ U exp -ie2o ~, ,i~jF(.-. )l Zo[p, fi, j] (48) 
l<--i<j<--n 

in (46) for Ix~ ~ 00. By definition, for given values of the integration variables 
X l , . . . , X n ,  X l  , . . . , X n ,  

Y. e,ejF(. -. ) = Y, e,ejf(x, - xj - X, + Xj) (49) 
l<--i<j<--n l~ i< j<_n  

Consider the application of (ya~/i+ m)6/64 (x~- Xi) in (28) as a contribu- 
tion to (48). This leads explicitly to 

f d3xi [exp(-ie,p~x,)][a(r;)] ~' f dX, x(X~)[']Zo[p, p,j][v(rl)] 1-'~' (50) 

where 

['] [ i p ( x i -X i ) -  2 i ] = eoyO Z e , e jF (x , -X , - x j+Xj )S (x~ -X i - . )p ( . )  
i<: j~n 

• [-ie2 Y, eie jF(xi -Xi-x j+Xj)  ] (51) 
i.<j<_ n 

By invoking the Riemann-Lebesgue lemma, we may assert that F(x~ - Xi - 
xj+Xj) and its first derivative ~0 for Ix~ (Adler and Bardeen, 1971), 
and we conclude that in this limit [.]~ip(x~-X~), and (51) be simply 
replaced by 

[ ft(r~) ]%i~ ( pl) Zo[p, fi, j ][ v( r;) ] 1-% 

=ta(r;)]~ f 

6 
x Zo[p, Lj][v(r;)] 1-~' (52) 

A similar analysis may be carried out with respect to the other variables x~. 
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Finally we use (14) to rewrite e m ~16jm in U(616p, ,518~, e"  ~/~jm) a s  

e . (g  ~ -  0~'0~/02) 6/8ff .  All told, we may rewrite the transition in question 
in (18) as 

exp [- , -~--F(0)  exp(i,S,~) U 6 p ' S f i '  S ) fi, J] eU ~j- 7 Zo[p, p=o,:=oa=o 

(53) 

where U may be written as in (28) with ,4j, /~j, replaced, respectively, by 

yg ta(rj)]o, f ( d X j ) [ e x p ( _ i e j p ~ X ~ ) ] ( T + m )  6 ~ )  [v(r~)] 1-~ (54) 

[~(l?)] 1-~, (dX~) [exp(iejpjXj)] ~ [ u ( r j ) ]  ~j (55) 

and e m* 6 / M  m and e m 6 / M  m replaced by 

e*(g '~'-a'~a'/O 2) ~/6j  (x:), e . (g  - a  a /a ) 

in 4 ,  /gJ, respectively. The photon propagator in Zo[p, fi, j] is defined in 
(38) [see also (44)]. 

Equation (53) establishes the equivalence of  the Coulomb gauge with 
the arbitrary gauges as defined in (38) for the transition amplitudes, up to 
gauge-dependent scaling factors such as [exp(- ie2/2)F(0)]" ,  and is a 
precise statement of the gauge independence of the so-called renormalized 
transition amplitudes. Finally, when we make the replacement e~, --> e , +  q,A, 
then the factor (g'~ --OP'Ov/O 2) in e . (g  ~'~ -O~'O~/O 2) 6/  6ff ensures the invari- 
ance of the latter expression. The situation with regard to non-Abelian 
gauge theories will be treated in a forthcoming report. 
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